Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS Neglected Tropical Diseases, 7(16), p. e0010516, 2022

DOI: 10.1371/journal.pntd.0010516

Links

Tools

Export citation

Search in Google Scholar

Facility-based disease surveillance and Bayesian hierarchical modeling to estimate endemic typhoid fever incidence, Kilimanjaro Region, Tanzania, 2007–2018

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Growing evidence suggests considerable variation in endemic typhoid fever incidence at some locations over time, yet few settings have multi-year incidence estimates to inform typhoid control measures. We sought to describe a decade of typhoid fever incidence in the Kilimanjaro Region of Tanzania. Cases of blood culture confirmed typhoid were identified among febrile patients at two sentinel hospitals during three study periods: 2007–08, 2011–14, and 2016–18. To account for under-ascertainment at sentinel facilities, we derived adjustment multipliers from healthcare utilization surveys done in the hospital catchment area. Incidence estimates and credible intervals (CrI) were derived using a Bayesian hierarchical incidence model that incorporated uncertainty of our observed typhoid fever prevalence, of healthcare seeking adjustment multipliers, and of blood culture diagnostic sensitivity. Among 3,556 total participants, 50 typhoid fever cases were identified. Of typhoid cases, 26 (52%) were male and the median (range) age was 22 (<1–60) years; 4 (8%) were aged <5 years and 10 (20%) were aged 5 to 14 years. Annual typhoid fever incidence was estimated as 61.5 (95% CrI 14.9–181.9), 6.5 (95% CrI 1.4–20.4), and 4.0 (95% CrI 0.6–13.9) per 100,000 persons in 2007–08, 2011–14, and 2016–18, respectively. There were no deaths among typhoid cases. We estimated moderate typhoid incidence (≥10 per 100 000) in 2007–08 and low (<10 per 100 000) incidence during later surveillance periods, but with overlapping credible intervals across study periods. Although consistent with falling typhoid incidence, we interpret this as showing substantial variation over the study periods. Given potential variation, multi-year surveillance may be warranted in locations making decisions about typhoid conjugate vaccine introduction and other control measures.