Published in

MDPI, Agronomy, 9(12), p. 2118, 2022

DOI: 10.3390/agronomy12092118

Links

Tools

Export citation

Search in Google Scholar

Use of Active Sensors in Coffee Cultivation for Monitoring Crop Yield

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Monitoring the spatial variability of agricultural variables is a main step in implementing precision agriculture practices. Active optical sensors (AOS), with their instrumentation directly on agricultural machines, are suitable and make it possible to obtain high-frequency data. This study aimed to evaluate the potential of AOS to map the spatial and temporal variability of coffee crop yields, as well as to establish guidelines for the acquisition of AOS data for sensing the sides of a coffee plant, allowing the evaluation of large commercial fields. The study was conducted in a commercial coffee area of 10.24 ha, cultivated with the Catuaí 144 variety. Data collection was performed with six Crop Circle ACS 430 sensors (Holland Scientific, Lincoln, NE, USA) and two N-Sensor NG sensors (Yara International, Dülmen, Germany). Seven field expeditions were made to collect data using the optical sensors during 2019 and 2021, obtaining data during the flowering, fruit-filling and fruit maturation phases (pre-harvest), and post-harvest. The results showed that the different faces of the same plant present a different Pearson’s correlation coefficient (r) to its yield, obtained with a yield monitor on the harvester. The face with the highest exposure to solar radiation presented a slightly higher correlation to yield (−0.34 ≤ r ≤ −0.17) when compared with the face with less exposure (−0.27 ≤ r ≤ −0.15). In addition, it was observed that the vegetation indices measured at the beginning of the coffee cycle (before the rainy season that starts in October) present a positive correlation to the coffee yield of that same year (0.73 ≤ r ≤ 0.91). On the other hand, this relationship is changed after the beginning of the rain season, at which time the vegetation index increases abruptly, inverting the correlation with the yield after that (−0.93 ≤ r ≤ −0.77). Furthermore, it was observed that, due to the biennial nature of coffee production, the vegetation index acquired at a specific time has an inverted relationship when compared with the yield of that year and to the yield of the following (or previous) year.