National Academy of Sciences, Proceedings of the National Academy of Sciences, 21(119), 2022
Full text: Download
Significance Synaptogenesis and neural network remodeling are at their maximum during the perinatal period of human brain development. Perturbations of this highly sensitive stage might underlie the etiology of neurodevelopmental disorders. Subchronic neonatal administration of phencyclidine, a drug of abuse, has been used to model schizophrenia in rodents. In this model, we found specific long-term synaptic changes in Purkinje cells and transient gene expression changes in the cerebellum. While transient increased neuronal activity in the cerebellum, induced using chemogenetics, reproduces some phencyclidine-induced molecular changes, it is insufficient to reproduce the long-term synaptic effects. Our results show the complex mechanism of action of phencyclidine on the development of neuronal connectivity and further highlight the potential contribution of cerebellar defects in psychiatric diseases.