Published in

American Association for the Advancement of Science, Science Advances, 6(8), 2022

DOI: 10.1126/sciadv.abj9756

Links

Tools

Export citation

Search in Google Scholar

Protecting ice from melting under sunlight via radiative cooling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

As ice plays a critical role in various aspects of life, from food preservation to ice sports and ecosystem, it is desirable to protect ice from melting, especially under sunlight. The fundamental reason for ice melt under sunlight is related to the imbalanced energy flows of the incoming sunlight and outgoing thermal radiation. Therefore, radiative cooling, which can balance the energy flows without energy consumption, offers a sustainable approach for ice protection. Here, we demonstrate that a hierarchically designed radiative cooling film based on abundant and eco-friendly cellulose acetate molecules versatilely provides effective and passive protection to various forms/scales of ice under sunlight. This work provides inspiration for developing an effective, scalable, and sustainable route for preserving ice and other critical elements of ecosystems.