Published in

American Institute of Physics, APL Materials, 10(10), p. 101112, 2022

DOI: 10.1063/5.0107320

Links

Tools

Export citation

Search in Google Scholar

Structural and electronic properties of SrCuO<sub>2+δ</sub> thin films

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The layered structure of superconducting cuprates is considered to be a key ingredient to achieve high superconducting transition temperatures. In this work, we investigate the possibility of doping the SrCuO2 infinite-layer compound by inserting additional oxygen into its structure. We observe that the infinite-layer SrCuO2 structure is epitaxially stabilized in thin films grown by pulsed laser deposition in pure O2. Increasing the oxidizing power by introducing ozone during the growth leads to a different phase with an elongated c axis. Scanning transmission electron microscopy analysis suggests that the films with an elongated c axis are composed of SrCuO2.5 blocks separated by SrCuO2 layers arranged to match the substrate spacing. X-ray absorption spectroscopy measurements show that this SrCuO2+ δ phase is associated with a more isotropic Cu orbital configuration and hole doping. This hole doping leads to a dramatic reduction in the resistivity of the films, with a magnitude that depends on the precise oxygen content in the structure.