Published in

Nature Research, Scientific Reports, 1(11), 2021

DOI: 10.1038/s41598-021-00663-2

Links

Tools

Export citation

Search in Google Scholar

The function of Scox in glial cells is essential for locomotive ability in Drosophila

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSynthesis of cytochrome c oxidase (Scox) is a Drosophila homolog of human SCO2 encoding a metallochaperone that transports copper to cytochrome c, and is an essential protein for the assembly of cytochrome c oxidase in the mitochondrial respiratory chain complex. SCO2 is highly conserved in a wide variety of species across prokaryotes and eukaryotes, and mutations in SCO2 are known to cause mitochondrial diseases such as fatal infantile cardioencephalomyopathy, Leigh syndrome, and Charcot-Marie-Tooth disease, a neurodegenerative disorder. These diseases have a common symptom of locomotive dysfunction. However, the mechanisms of their pathogenesis remain unknown, and no fundamental medications or therapies have been established for these diseases. In this study, we demonstrated that the glial cell-specific knockdown of Scox perturbs the mitochondrial morphology and function, and locomotive behavior in Drosophila. In addition, the morphology and function of synapses were impaired in the glial cell-specific Scox knockdown. Furthermore, Scox knockdown in ensheathing glia, one type of glial cell in Drosophila, resulted in larval and adult locomotive dysfunction. This study suggests that the impairment of Scox in glial cells in the Drosophila CNS mimics the pathological phenotypes observed by mutations in the SCO2 gene in humans.