Published in

American Association for Cancer Research, Clinical Cancer Research, 16(27), p. 4539-4548, 2021

DOI: 10.1158/1078-0432.ccr-21-0358

Links

Tools

Export citation

Search in Google Scholar

Blood Biomarker Landscape in Patients with High-risk Nonmetastatic Castration-Resistant Prostate Cancer Treated with Apalutamide and Androgen-Deprivation Therapy as They Progress to Metastatic Disease

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: In the placebo-controlled SPARTAN study, apalutamide added to androgen-deprivation therapy (ADT) improved metastasis-free survival, second progression-free survival (PFS2), and overall survival (OS) in patients with nonmetastatic castration-resistant prostate cancer (nmCRPC). Mechanisms of resistance to apalutamide in nmCRPC require evaluation. Patients and Methods: In a subset of patients from SPARTAN, aberrations were assessed at baseline and end of study treatment (EOST) using targeted next-generation sequencing or qRT-PCR. Circulating-tumor DNA (ctDNA) levels were assessed qualitatively. Select aberrations in androgen receptor (AR) and other common PC-driving genes were detected and summarized by the treatment group; genomic aberrations were summarized in ctDNA-positive samples. Association between detection of aberrations in all patients and outcomes was assessed using Cox proportional-hazards models and multivariate analysis. Results: In 247 patients, the overall prevalence of ctDNA, AR aberrations, and TP53 inactivation increased from baseline (40.6%, 13.6%, and 22.2%) to EOST (57.1%, 25.4%, and 35.0%) and was comparable between treatment groups at EOST. In patients who received subsequent androgen signaling inhibition after study treatment, detectable biomarkers at EOST were significantly associated with poor outcomes: ctDNA with PFS2 or OS (HR, 2.01 or 2.17, respectively; P < 0.0001 for both), any AR aberration with PFS2 (1.74; P = 0.024), and TP53 or BRCA2 inactivation with OS (2.06; P = 0.003; or 3.1; P < 0.0001). Conclusions: Apalutamide plus ADT did not increase detectable AR/non-AR aberrations over ADT alone. Detectable ctDNA, AR aberrations, and TP53/BRCA2 inactivation at EOST were associated with poor outcomes in patients treated with first subsequent androgen signaling inhibitor.