Published in

MDPI, Atmosphere, 8(12), p. 1079, 2021

DOI: 10.3390/atmos12081079

Links

Tools

Export citation

Search in Google Scholar

Microbiological Contamination Assessment in Higher Education Institutes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The higher education sector represents a unique environment and it acts as a work environment, a learning environment for students, and frequently, also a home environment. The aim of this study was to determine the microbial contamination (SARS-CoV-2, fungi, and bacteria) in Higher Education Facilities (HEI) by using active and passive sampling methods and combining culture-based methods with molecular tools targeting Aspergillus section Fumigati. In addition, the resistance to azole profile was also assessed. Surface samples showed a range of total bacterial contamination between 1 × 103 to 3.1 × 106 CFU·m−2, while Gram-negative bacteria ranged from 0 to 1.9 × 104 CFU·m−2. Fungal contamination ranged from 2 × 103 to 1.8 × 105 CFU·m−2 on MEA, and from 5 × 103 to 1.7 × 105 CFU·m−2 on DG18. The most prevalent species found on both media was Cladosporium sp. (47.36% MEA; 32.33% DG18). Aspergillus genera was observed on MEA (3.21%) and DG18 (14.66%), but not in the supplemented media used for the azole screening. Aspergillus section Fumigati was detected in 2 air samples (2.22%, 2 out of 90 samples) by qPCR. When testing for SARS-CoV-2 all results were negative. The present study showed that although cleaning and disinfection procedures are done regularly due to the COVID-19 pandemic, being effective in eliminating SARS-CoV-2, surfaces were often contaminated with microorganisms other than SARS-CoV-2. This can be a result of increasing resistance to biocides, and to the wide range of environmental factors that can contribute to the dissemination of microbial contamination indoors.