Published in

American Institute of Physics, Applied Physics Letters, 24(121), p. 243501, 2022

DOI: 10.1063/5.0113744

Links

Tools

Export citation

Search in Google Scholar

500 °C operation of β-Ga<sub>2</sub>O<sub>3</sub> field-effect transistors

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We demonstrated 500 °C operation of field-effect transistors made using ultra-wide bandgap semiconductor β-Ga2O3. Metal–semiconductor field-effect transistors were fabricated using epitaxial conductive films grown on an insulating β-Ga2O3 substrate, TiW refractory metal gates, and Si-implanted source/drain contacts. Devices were characterized in DC mode at different temperatures up to 500 °C in vacuum. These variable-temperature measurements showed a reduction in gate modulation of the drain current due to an increase in gate leakage across the gate/semiconductor Schottky barrier. Devices exhibited a reduction in transconductance with increasing temperature; despite this, drain current increased with temperature due to a reduction in threshold voltage caused by the de-trapping of electrons from deep-level traps. Devices also showed negligible change in semiconductor epitaxy and source/drain contacts, hence demonstrated recovery to their room-temperature electrical properties after the devices were tested intermittently at different high temperatures in vacuum. The mechanism of gate leakage was also explored, which implicated the presence of different conduction mechanisms at different temperatures and gate electric fields.