Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sensors, 21(22), p. 8486, 2022

DOI: 10.3390/s22218486

Links

Tools

Export citation

Search in Google Scholar

Markerless Radio Frequency Indoor Monitoring for Telemedicine: Gait Analysis, Indoor Positioning, Fall Detection, Tremor Analysis, Vital Signs and Sleep Monitoring

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Quantitative indoor monitoring, in a low-invasive and accurate way, is still an unmet need in clinical practice. Indoor environments are more challenging than outdoor environments, and are where patients experience difficulty in performing activities of daily living (ADLs). In line with the recent trends of telemedicine, there is an ongoing positive impulse in moving medical assistance and management from hospitals to home settings. Different technologies have been proposed for indoor monitoring over the past decades, with different degrees of invasiveness, complexity, and capabilities in full-body monitoring. The major classes of devices proposed are inertial-based sensors (IMU), vision-based devices, and geomagnetic and radiofrequency (RF) based sensors. In recent years, among all available technologies, there has been an increasing interest in using RF-based technology because it can provide a more accurate and reliable method of tracking patients’ movements compared to other methods, such as camera-based systems or wearable sensors. Indeed, RF technology compared to the other two techniques has higher compliance, low energy consumption, does not need to be worn, is less susceptible to noise, is not affected by lighting or other physical obstacles, has a high temporal resolution without a limited angle of view, and fewer privacy issues. The aim of the present narrative review was to describe the potential applications of RF-based indoor monitoring techniques and highlight their differences compared to other monitoring technologies.