Dissemin is shutting down on January 1st, 2025

Published in

American Society of Hematology, Blood, 2023

DOI: 10.1182/blood.2022016779

Links

Tools

Export citation

Search in Google Scholar

Iron homeostasis governs erythroid phenotype in Polycythemia Vera

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Polycythemia Vera (PV) is a myeloproliferative neoplasm driven by activating mutations in JAK2 that result in unrestrained erythrocyte production, increasing patients' hematocrit and hemoglobin concentration, placing them at risk of life-threatening thrombotic events. Our GWAS of 440 PV cases and 403,351 controls utilizing UK Biobank data found that SNPs in HFE known to cause hemochromatosis are highly associated with PV diagnosis, linking iron regulation to PV. Analysis of the FinnGen dataset independently confirmed over-representation of homozygous HFE variants in PV patients. HFE influences the expression of hepcidin, the master regulator of systemic iron homeostasis. Through genetic dissection of PV mouse models, we show that the PV erythroid phenotype is directly linked to hepcidin expression: endogenous hepcidin upregulation alleviates erythroid disease whereas hepcidin ablation worsens it. Further, we demonstrate that in PV, hepcidin is not regulated by expanded erythropoiesis but is likely governed by inflammatory cytokines signaling via GP130 coupled receptors. These findings have important implications for understanding the pathophysiology of PV and offer new therapeutic strategies for this disease.