Published in

Public Library of Science, PLoS ONE, 9(17), p. e0273560, 2022

DOI: 10.1371/journal.pone.0273560

Links

Tools

Export citation

Search in Google Scholar

A machine learning approach to evaluate the state of hypertension care coverage: From 2016 STEPs survey in Iran

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background The increasing burden of hypertension in low- to middle-income countries necessitates the assessment of care coverage to monitor progress and guide future policies. This study uses an ensemble learning approach to evaluate hypertension care coverage in a nationally representative Iranian survey. Methods The data source was the cross-sectional 2016 Iranian STEPwise approach to risk factor surveillance (STEPs). Hypertension was based on blood pressure ≥140/90 mmHg, reported use of anti-hypertensive medications, or a previous hypertension diagnosis. The four steps of care were screening (irrespective of blood pressure value), diagnosis, treatment, and control. The proportion of patients reaching each step was calculated, and a random forest model was used to identify features associated with progression to each step. After model optimization, the six most important variables at each step were considered to demonstrate population-based marginal effects. Results The total number of participants was 30541 (52.3% female, median age: 42 years). Overall, 9420 (30.8%) had hypertension, among which 89.7% had screening, 62.3% received diagnosis, 49.3% were treated, and 7.9% achieved control. The random forest model indicated that younger age, male sex, lower wealth, and being unmarried/divorced were consistently associated with a lower probability of receiving care in different levels. Dyslipidemia was associated with reaching diagnosis and treatment steps; however, patients with other cardiovascular comorbidities were not likely to receive more intensive blood pressure management. Conclusion Hypertension care was mostly missing the treatment and control stages. The random forest model identified features associated with receiving care, indicating opportunities to improve effective coverage.