Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science Advances, 50(8), 2022

DOI: 10.1126/sciadv.abn6025

Links

Tools

Export citation

Search in Google Scholar

β-Endorphin mediates radiation therapy fatigue

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Fatigue is a common adverse effect of external beam radiation therapy in cancer patients. Mechanisms causing radiation fatigue remain unclear, although linkage to skin irradiation has been suggested. β-Endorphin, an endogenous opioid, is synthesized in skin following genotoxic ultraviolet irradiation and acts systemically, producing addiction. Exogenous opiates with the same receptor activity as β-endorphin can cause fatigue. Using rodent models of radiation therapy, exposing tails and sparing vital organs, we tested whether skin-derived β-endorphin contributes to radiation-induced fatigue. Over a 6-week radiation regimen, plasma β-endorphin increased in rats, paralleled by opiate phenotypes (elevated pain thresholds, Straub tail) and fatigue-like behavior, which was reversed in animals treated by the opiate antagonist naloxone. Mechanistically, all these phenotypes were blocked by opiate antagonist treatment and were undetected in either β-endorphin knockout mice or mice lacking keratinocyte p53 expression. These findings implicate skin-derived β-endorphin in systemic effects of radiation therapy. Opioid antagonism may warrant testing in humans as treatment or prevention of radiation-induced fatigue.