Published in

Nature Research, Scientific Reports, 1(11), 2021

DOI: 10.1038/s41598-021-90555-2

Links

Tools

Export citation

Search in Google Scholar

Observing deep radiomics for the classification of glioma grades

Journal article published in 2021 by Kazuma Kobayashi, Mototaka Miyake, Masamichi Takahashi ORCID, Ryuji Hamamoto
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractDeep learning is a promising method for medical image analysis because it can automatically acquire meaningful representations from raw data. However, a technical challenge lies in the difficulty of determining which types of internal representation are associated with a specific task, because feature vectors can vary dynamically according to individual inputs. Here, based on the magnetic resonance imaging (MRI) of gliomas, we propose a novel method to extract a shareable set of feature vectors that encode various parts in tumor imaging phenotypes. By applying vector quantization to latent representations, features extracted by an encoder are replaced with a fixed set of feature vectors. Hence, the set of feature vectors can be used in downstream tasks as imaging markers, which we call deep radiomics. Using deep radiomics, a classifier is established using logistic regression to predict the glioma grade with 90% accuracy. We also devise an algorithm to visualize the image region encoded by each feature vector, and demonstrate that the classification model preferentially relies on feature vectors associated with the presence or absence of contrast enhancement in tumor regions. Our proposal provides a data-driven approach to enhance the understanding of the imaging appearance of gliomas.