Published in

De Gruyter Open, Nanophotonics, 17(11), p. 4063-4072, 2022

DOI: 10.1515/nanoph-2021-0752

Links

Tools

Export citation

Search in Google Scholar

Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The integration of artificial intelligence (AI) systems in the daily life greatly increases the amount of data generated and processed. In addition to the large computational power required, the hardware needs to be compact and energy efficient. One promising approach to fulfill those requirements is phase-change material based photonic neuromorphic computing that enables in-memory computation and a high degree of parallelization. In the following, we present an optimized layout of a photonic tensor core (PTC) which is designed to perform real valued matrix vector multiplications and operates at telecommunication wavelengths. We deploy the well-studied phase-change material Ge2Sb2Te5 (GST) as an optical attenuator to perform single positive valued multiplications. In order to generalize the multiplication to arbitrary real factors, we develop a novel symmetric multiplication unit which directly includes a reference-computation branch. The variable GST attenuator enables a modulation depth of 5 dB over a wavelength range of 100 nm with a wavelength dependency below 0.8 dB. The passive photonic circuit itself ensures equal coupling to the main-computation and reference-computation branch over the complete wavelength range. For the first time, we integrate wavelength multiplexers (MUX) together with a photonic crossbar array on-chip, paving the way towards fully integrated systems. The MUX are crucial for the PTC since they enable multiple computational channels in a single photonic crossbar array. We minimize the crosstalk between the channels by designing Bragg scattering based MUX. By cascading, we achieve an extinction ratio larger than 61 dB while the insertion loss is below 1 dB.