Published in

American Association for the Advancement of Science, Science Translational Medicine, 671(14), 2022

DOI: 10.1126/scitranslmed.abl7646

Links

Tools

Export citation

Search in Google Scholar

APOE ε4 genotype, amyloid-β, and sex interact to predict tau in regions of high APOE mRNA expression

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The apolipoprotein E ( APOE ) ε4 allele is strongly linked with cerebral β-amyloidosis, but its relationship with tauopathy is less established. We investigated the relationship between APOE ε4 carrier status, regional amyloid-β (Aβ), magnetic resonance imaging (MRI) volumetrics, tau positron emission tomography (PET), APOE messenger RNA (mRNA) expression maps, and cerebrospinal fluid phosphorylated tau (CSF ptau 181 ). Three hundred fifty participants underwent imaging, and 270 had ptau 181 . We used computational models to evaluate the main effect of APOE ε4 carrier status on regional neuroimaging values and then the interaction of ε4 status and global Aβ on regional tau PET and brain volumes as well as CSF ptau 181 . Separately, we also examined the additional interactive influence of sex. We found that, for the same degree of Aβ burden, APOE ε4 carriers showed greater tau PET signal relative to noncarriers in temporal regions, but no interaction was present for MRI volumes or CSF ptau 181 . This potentiation of tau aggregation irrespective of sex occurred in brain regions with high APOE mRNA expression, suggesting local vulnerabilities to tauopathy. There were greater effects of APOE genotype in females, although the interactive sex effects did not strongly mirror mRNA expression. Pathology is not homogeneously expressed throughout the brain but mirrors underlying biological patterns such as gene expression.