Published in

Optica, Optics Express, 11(30), p. 19199, 2022

DOI: 10.1364/oe.453493

Links

Tools

Export citation

Search in Google Scholar

Ultralow-power all-optical switching via a chiral Mach-Zehnder interferometer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

It is a challenge for all-optical switching to simultaneous achieve ultralow power consumption, broad bandwidth and high extinction ratio. We experimentally demonstrate an ultralow-power all-optical switching by exploiting chiral interaction between light and optically active material in a Mach-Zehnder interferometer. We achieve switching extinction ratio of 20.0 ± 3.8 and 14.7 ± 2.8 dB with power cost of 66.1 ± 0.7 and 1.3 ± 0.1 fJ/bit, respectively. The bandwidth of our all-optical switching is about 4.2 GHz. Moreover, our all-optical switching has the potential to be operated at few-photon level. Our scheme paves the way towards ultralow-power and ultrafast all-optical information processing.