Published in

BioMed Central, Acta Neuropathologica Communications, 1(9), 2021

DOI: 10.1186/s40478-021-01263-x

Links

Tools

Export citation

Search in Google Scholar

TREM2 modulates differential deposition of modified and non-modified Aβ species in extracellular plaques and intraneuronal deposits

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractProgressive accumulation of Amyloid-β (Aβ) deposits in the brain is a characteristic neuropathological hallmark of Alzheimer’s disease (AD). During disease progression, extracellular Aβ plaques undergo specific changes in their composition by the sequential deposition of different modified Aβ species. Microglia are implicated in the restriction of amyloid deposits and play a major role in internalization and degradation of Aβ. Recent studies showed that rare variants of the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) are associated with an increased risk for AD. Post-translational modifications of Aβ could modulate the interaction with TREM2, and the uptake by microglia. Here, we demonstrate that genetic deletion of TREM2 or expression of a disease associated TREM2 variant in mice lead to differential accumulation of modified and non-modified Aβ species in extracellular plaques and intraneuronal deposits. Human brains with rare TREM2 AD risk variants also showed altered deposition of modified Aβ species in the different brain lesions as compared to cases with the common variant of TREM2. These findings indicate that TREM2 plays a critical role in the development and the composition of Aβ deposits, not only in extracellular plaques, but also intraneuronally, that both could contribute to the pathogenesis of AD.