Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 19(12), p. 10077, 2022

DOI: 10.3390/app121910077

Links

Tools

Export citation

Search in Google Scholar

Machine Learning-Based Forest Burned Area Detection with Various Input Variables: A Case Study of South Korea

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Recently, an increase in wildfire incidents has caused significant damage from economical, humanitarian, and environmental perspectives. Wildfires have increased in severity, frequency, and duration because of climate change and rising global temperatures, resulting in the release of massive volumes of greenhouse gases, the destruction of forests and associated habitats, and the damage to infrastructures. Therefore, identifying burned areas is crucial for monitoring wildfire damage. In this study, we aim at detecting forest burned areas occurring in South Korea using optical satellite images. To exploit the advantage of applying machine learning, the present study employs representative three machine learning methods, Light Gradient Boosting Machine (LightGBM), Random Forest (RF), and U-Net, to detect forest burned areas with a combination of input variables, namely Surface Reflectance (SR), Normalized Difference Vegetation Index (NDVI), and Normalized Burn Ratio (NBR). Two study sites of recently occurred forest fire events in South Korea were selected, and Sentinel-2 satellite images were used by considering a small scale of the forest fires. The quantitative and qualitative evaluations according to the machine learning methods and input variables were carried out. In terms of the comparison focusing on machine learning models, the U-Net showed the highest accuracy in both sites amongst the designed variants. The pre and post fire images by SR, NDVI, NBR, and difference of indices as the main inputs showed the best result. We also demonstrated that diverse landcovers may result in a poor burned area detection performance by comparing the results of the two sites.