Published in

Oxford University Press, Schizophrenia Bulletin: The Journal of Psychoses and Related Disorders, 2(49), p. 350-363, 2022

DOI: 10.1093/schbul/sbac169

Links

Tools

Export citation

Search in Google Scholar

Sex- and Age-Specific Deviations in Cerebellar Structure and Their Link With Symptom Dimensions and Clinical Outcome in Individuals at Clinical High Risk for Psychosis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background The clinical high-risk (CHR) period offers a temporal window into neurobiological deviations preceding psychosis onset, but little attention has been given to regions outside the cerebrum in large-scale studies of CHR. Recently, the North American Prodrome Longitudinal Study (NAPLS)-2 revealed altered functional connectivity of the cerebello-thalamo-cortical circuitry among individuals at CHR; however, cerebellar morphology remains underinvestigated in this at-risk population, despite growing evidence of its involvement in psychosis. Study Design In this multisite study, we analyzed T1-weighted magnetic resonance imaging scans obtained from N = 469 CHR individuals (61% male, ages = 12–36 years) and N = 212 healthy controls (52% male, ages = 12–34 years) from NAPLS-2, with a focus on cerebellar cortex and white matter volumes separately. Symptoms were rated by the Structured Interview for Psychosis-Risk Syndromes (SIPS). The outcome by two-year follow-up was categorized as in-remission, symptomatic, prodromal-progression, or psychotic. General linear models were used for case-control comparisons and tests for volumetric associations with baseline SIPS ratings and clinical outcomes. Study Results Cerebellar cortex and white matter volumes differed between the CHR and healthy control groups at baseline, with sex moderating the difference in cortical volumes, and both sex and age moderating the difference in white matter volumes. Baseline ratings for major psychosis-risk dimensions as well as a clinical outcome at follow-up had tissue-specific associations with cerebellar volumes. Conclusions These findings point to clinically relevant deviations in cerebellar cortex and white matter structures among CHR individuals and highlight the importance of considering the complex interplay between sex and age when studying the neuromaturational substrates of psychosis risk.