Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science Immunology, 77(7), 2022

DOI: 10.1126/sciimmunol.abq4531

Links

Tools

Export citation

Search in Google Scholar

GTF3A mutations predispose to herpes simplex encephalitis by disrupting biogenesis of the host-derived RIG-I ligand RNA5SP141

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Herpes simplex virus 1 (HSV-1) infects several billion people worldwide and can cause life-threatening herpes simplex encephalitis (HSE) in some patients. Monogenic defects in components of the type I interferon system have been identified in patients with HSE, emphasizing the role of inborn errors of immunity underlying HSE pathogenesis. Here, we identify compound heterozygous loss-of-function mutations in the gene GTF3A encoding for transcription factor IIIA (TFIIIA), a component of the RNA polymerase III complex, in a patient with common variable immunodeficiency and HSE. Patient fibroblasts and GTF3A gene–edited cells displayed impaired HSV-1–induced innate immune responses and enhanced HSV-1 replication. Chromatin immunoprecipitation sequencing analysis identified the 5 S ribosomal RNA pseudogene 141 ( RNA5SP141 ), an endogenous ligand of the RNA sensor RIG-I, as a transcriptional target of TFIIIA. GTF3A mutant cells exhibited diminished RNA5SP141 expression and abrogated RIG-I activation upon HSV-1 infection. Our work unveils a crucial role for TFIIIA in transcriptional regulation of a cellular RIG-I agonist and shows that GTF3A genetic defects lead to impaired cell-intrinsic anti–HSV-1 responses and can predispose to HSE.