Published in

MDPI, Remote Sensing, 20(13), p. 4103, 2021

DOI: 10.3390/rs13204103

Links

Tools

Export citation

Search in Google Scholar

Proximal Gamma-Ray Spectroscopy: An Effective Tool to Discern Rain from Irrigation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Proximal gamma-ray spectroscopy is a consolidated technology for a continuous and real-time tracing of soil water content at field scale. New developments have shown that this method can also act as an unbiased tool for remotely distinguishing rainwater from irrigation without any meteorological support information. Given a single detector, the simultaneous observation in a gamma spectrum of a transient increase in the 214Pb signal, coupled with a decrease in the 40K signal, acts as an effective proxy for rainfall. A decrease in both 214Pb and 40K signals is, instead, a reliable fingerprint for irrigation. We successfully proved this rationale in two data-taking campaigns performed on an agricultural test field with different crop types (tomato and maize). The soil moisture levels were assessed via the 40K gamma signal on the basis of a one-time setup calibration. The validation against a set of gravimetric measurements showed excellent results on both bare and vegetated soil conditions. Simultaneously, the observed rain-induced increase in the 214Pb signal permitted to identify accurately the rain and irrigation events occurred in the 8852 h of data taking.