Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(11), 2021

DOI: 10.1038/s41598-021-96616-w

Links

Tools

Export citation

Search in Google Scholar

Differential progression of coronary atherosclerosis according to plaque composition: a cluster analysis of PARADIGM registry data

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractPatient-specific phenotyping of coronary atherosclerosis would facilitate personalized risk assessment and preventive treatment. We explored whether unsupervised cluster analysis can categorize patients with coronary atherosclerosis according to their plaque composition, and determined how these differing plaque composition profiles impact plaque progression. Patients with coronary atherosclerotic plaque (n = 947; median age, 62 years; 59% male) were enrolled from a prospective multi-national registry of consecutive patients who underwent serial coronary computed tomography angiography (median inter-scan duration, 3.3 years). K-means clustering applied to the percent volume of each plaque component and identified 4 clusters of patients with distinct plaque composition. Cluster 1 (n = 52), which comprised mainly fibro-fatty plaque with a significant necrotic core (median, 55.7% and 16.0% of the total plaque volume, respectively), showed the least total plaque volume (PV) progression (+ 23.3 mm3), with necrotic core and fibro-fatty PV regression (− 5.7 mm3 and − 5.6 mm3, respectively). Cluster 2 (n = 219), which contained largely fibro-fatty (39.2%) and fibrous plaque (46.8%), showed fibro-fatty PV regression (− 2.4 mm3). Cluster 3 (n = 376), which comprised mostly fibrous (62.7%) and calcified plaque (23.6%), showed increasingly prominent calcified PV progression (+ 21.4 mm3). Cluster 4 (n = 300), which comprised mostly calcified plaque (58.7%), demonstrated the greatest total PV increase (+ 50.7mm3), predominantly increasing in calcified PV (+ 35.9 mm3). Multivariable analysis showed higher risk for plaque progression in Clusters 3 and 4, and higher risk for adverse cardiac events in Clusters 2, 3, and 4 compared to that in Cluster 1. Unsupervised clustering algorithms may uniquely characterize patient phenotypes with varied atherosclerotic plaque profiles, yielding distinct patterns of progressive disease and outcome.