Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(12), 2021

DOI: 10.1038/s41467-021-21592-8

Links

Tools

Export citation

Search in Google Scholar

A scalable unified framework of total and allele-specific counts for cis-QTL, fine-mapping, and prediction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractGenetic studies of the transcriptome help bridge the gap between genetic variation and phenotypes. To maximize the potential of such studies, efficient methods to identify expression quantitative trait loci (eQTLs) and perform fine-mapping and genetic prediction of gene expression traits are needed. Current methods that leverage both total read counts and allele-specific expression to identify eQTLs are generally computationally intractable for large transcriptomic studies. Here, we describe a unified framework that addresses these needs and is scalable to thousands of samples. Using simulations and data from GTEx, we demonstrate its calibration and performance. For example, mixQTL shows a power gain equivalent to a 29% increase in sample size for genes with sufficient allele-specific read coverage. To showcase the potential of mixQTL, we apply it to 49 GTEx tissues and find 20% additional eQTLs (FDR < 0.05, per tissue) that are significantly more enriched among trait associated variants and candidate cis-regulatory elements comparing to the standard approach.