Published in

American Association for the Advancement of Science (AAAS), 2023

DOI: 10.17863/cam.93768

American Association for the Advancement of Science, Science Immunology, 74(7), 2022

DOI: 10.1126/sciimmunol.abn3800

Links

Tools

Export citation

Search in Google Scholar

Immunodeficiency, autoimmunity, and increased risk of B cell malignancy in humans with TRAF3 mutations

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Tumor necrosis factor receptor–associated factor 3 (TRAF3) is a central regulator of immunity. TRAF3 is often somatically mutated in B cell malignancies, but its role in human immunity is not defined. Here, in five unrelated families, we describe an immune dysregulation syndrome of recurrent bacterial infections, autoimmunity, systemic inflammation, B cell lymphoproliferation, and hypergammaglobulinemia. Affected individuals each had monoallelic mutations in TRAF3 that reduced TRAF3 expression. Immunophenotyping showed that patients’ B cells were dysregulated, exhibiting increased nuclear factor-κB 2 activation, elevated mitochondrial respiration, and heightened inflammatory responses. Patients had mild CD4 + T cell lymphopenia, with a reduced proportion of naïve T cells but increased regulatory T cells and circulating T follicular helper cells. Guided by this clinical phenotype, targeted analyses demonstrated that common genetic variants, which also reduce TRAF3 expression, are associated with an increased risk of B cell malignancies, systemic lupus erythematosus, higher immunoglobulin levels, and bacterial infections in the wider population. Reduced TRAF3 conveys disease risks by driving B cell hyperactivity via intrinsic activation of multiple intracellular proinflammatory pathways and increased mitochondrial respiration, with a likely contribution from dysregulated T cell help. Thus, we define monogenic TRAF3 haploinsufficiency syndrome and demonstrate how common TRAF3 variants affect a range of human diseases.