Published in

MDPI, Viruses, 12(13), p. 2501, 2021

DOI: 10.3390/v13122501

Links

Tools

Export citation

Search in Google Scholar

INSTIs and NNRTIs Potently Inhibit HIV-1 Polypurine Tract Mutants in a Single Round Infection Assay

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Integrase strand transfer inhibitors (INSTIs) are a class of antiretroviral compounds that prevent the insertion of a DNA copy of the viral genome into the host genome by targeting the viral enzyme integrase (IN). Dolutegravir (DTG) is a leading INSTI that is given, usually in combination with nucleoside reverse transcriptase inhibitors (NRTIs), to treat HIV-1 infections. The emergence of resistance to DTG and other leading INSTIs is rare. However, there are recent reports suggesting that drug resistance mutations can occur at positions outside the integrase gene either in the HIV-1 polypurine tract (PPT) or in the envelope gene (env). Here, we used single round infectivity assays to measure the antiviral potencies of several FDA-approved INSTIs and non-nucleoside reverse transcriptase inhibitors (NNRTIs) against a panel of HIV-1 PPT mutants. We also tested several of our promising INSTIs and NNRTIs in these assays. No measurable loss in potency was observed for either INSTIs or NNRTIs against the HIV-1 PPT mutants. This suggests that HIV-1 PPT mutants are not able, by themselves, to confer resistance to INSTIs or NNRTIs.