Full text: Unavailable
Abstract Background Intratumoral heterogeneity is crucially involved in metastasis, resistance to therapy, and cancer relapse. Amplifications of the proto-oncogene MYC display notable heterogeneity at the single-cell level and are associated with a particularly dismal prognosis in high-risk medulloblastomas (MBs). The aim of this study was to establish the relevance of interclonal cross-talk between MYC-driven and non-MYC-driven MB cells. Methods We used fluorescence in situ hybridization, single-cell transcriptomics, and immunohistochemistry, in vitro isogenic cell models, non-targeted proteomics, mass spectrometry-based metabolite quantification, HUVECs tube formation assay, and orthotopic in vivo experiments to investigate interclonal cross-talk in MB. Results We found that the release of lactate dehydrogenase A (LDHA) from MYC-driven cells facilitates metastatic seeding and outgrowth, while secretion of dickkopf WNT signaling pathway inhibitor 3 from non-MYC-driven cells promotes tumor angiogenesis. This tumor-supporting interaction between both subclones was abrogated by targeting the secretome through pharmacological and genetic inhibition of LDHA, which significantly suppressed tumor cell migration. Conclusion Our study reveals the functional relevance of clonal diversity and highlights the therapeutic potential of targeting the secretome to interrupt interclonal communication and progression in high-risk MB.