Published in

MDPI, Agronomy, 4(11), p. 698, 2021

DOI: 10.3390/agronomy11040698

Links

Tools

Export citation

Search in Google Scholar

The Effect of Different Drying Methods on Primary and Secondary Metabolites in Korean Mint Flower

Journal article published in 2021 by Chang Ha Park, Hyeon Ji Yeo, Chanung Park, Yong Suk Chung ORCID, Sang Un Park ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Edible flowers have been used in the food and beverage industries because of their high nutritional value, flavor, and scent. For the storage of edible flowers used in these industries, drying is a necessity to store the materials more easily and prevent the damage of metabolites in the flowers. However, drying may affect metabolite retention because drying conditions can differ according to the various methods. In this study, Agastache rugosa flowers were dried using four different methods (oven drying at 25 ± 1 °C, 50 ± 1 °C, 80 ± 1 °C, and freeze drying) and primary and secondary metabolites were analyzed using high-performance liquid chromatography (HPLC) and gas chromatography time-of-flight mass spectrometry (GC-TOF/MS). Freeze-dried flower samples contained higher levels of carotenoids (lutein, 13Z-β-carotene, β-carotene, and 9Z-β-carotene) and phenolics (rosmarinic acid, ferulic acid, and sinapic acid). Contrarily, the 80 °C oven-dried flower samples contained higher levels of most amino acids and flavonoids (including acacetin and tilianin) and at 25 °C and 50 °C contained higher levels of carbohydrates. Therefore, freeze-drying is a suitable method for retaining carotenoids and phenolics. In contrast, oven drying at 50 °C was highly recommended to retain amino acids and flavonoids.