Dissemin is shutting down on January 1st, 2025

Published in

BMJ Publishing Group, Journal of Neurology, Neurosurgery and Psychiatry, 7(92), p. 702-708, 2021

DOI: 10.1136/jnnp-2020-325125

Links

Tools

Export citation

Search in Google Scholar

Factors associated with time to independent walking recovery post-stroke

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BackgroundPast studies have inconsistently identified factors associated with independent walking post-stroke. We investigated the relationship between pre-stroke factors and factors collected acutely after stroke and number of days to walking 50 m unassisted using data from A Very Early Rehabilitation Trial (AVERT).MethodsThe outcome was recovery of 50 m independent walking, tested from 24 hours to 3 months post-stroke. A set of a priori defined factors (participant demographics: age, sex, handedness; pre-stroke: hypertension, ischaemic heart disease, hypercholesterolaemia, diabetes mellitus, atrial fibrillation; stroke-related: stroke severity, stroke type, ischaemic stroke location, stroke hemisphere, thrombolysis) were investigated for association with independent walking using a cause-specific competing risk Cox proportional hazards model. Respective effect sizes are reported as cause-specific adjusted HR (caHR) adjusted for age, stroke severity and AVERT intervention.ResultsA total of 2100 participants (median age 73 years, National Institutes of Health Stroke Scale 7, <1% missing data) with stroke were included. The median time to walking 50 m unassisted was 6 days (IQR 2–63) and 75% achieved independent walking by 3 months. Adjusted Cox regression indicated that slower return to independent walking was associated with older age (caHR 0.651, 95% CI 0.569 to 0.746), diabetes (caHR 0.836, 95% CI 0.740 to 0.945), severe stroke (caHR 0.094, 95% CI 0.072 to 0.122), haemorrhagic stroke (caHR 0.790, 95% CI 0.675 to 0.925) and right hemisphere stroke (caHR 0.796, 95% CI 0.714 to 0.887).ConclusionOur analysis provides robust evidence for important factors associated with independent walking recovery. These findings highlight the need for tailored mobilisation programmes that target subgroups, in particular people with haemorrhagic and severe stroke.