Dissemin is shutting down on January 1st, 2025

Published in

American Society of Clinical Oncology, Journal of Clinical Oncology, 5(41), p. 1046-1058, 2023

DOI: 10.1200/jco.22.00574

Links

Tools

Export citation

Search in Google Scholar

Health Benefits and Cost-Effectiveness of Children's Oncology Group Breast Cancer Screening Guidelines for Chest-Irradiated Hodgkin Lymphoma Survivors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

PURPOSE To evaluate the outcomes and cost-effectiveness of the Children's Oncology Group Guideline recommendation for breast cancer (BC) screening using mammography (MAM) and breast magnetic resonance imaging (MRI) in female chest-irradiated childhood Hodgkin lymphoma (HL) survivors. Digital breast tomosynthesis (DBT), increasingly replacing MAM in practice, was also examined. METHODS Life years (LYs), quality-adjusted LYs (QALYs), BC mortality, health care costs, and false-positive screen frequencies of undergoing annual MAM, DBT, MRI, MAM + MRI, and DBT + MRI from age 25 to 74 years were estimated by microsimulation. BC risks and non-BC mortality were estimated from female 5-year survivors of HL in the Childhood Cancer Survivor Study and the US population. Test performance of MAM and MRI was synthesized from HL studies, and that of DBT from the general population. Costs (2017 US dollars [USD]) and utility weights were obtained from the medical literature. Incremental cost-effectiveness ratios (ICERs) were calculated. RESULTS With 100% screening adherence, annual BC screening extended LYs by 0.34-0.46 years over no screening. If the willingness-to-pay threshold to gain a quality-adjusted LY was ICER < $100,000 USD, annual MAM at age 25-74 years was the only cost-effective strategy. When nonadherence was taken into consideration, only annual MAM at age 30-74 years (ICER = $56,972 USD) was cost-effective. Supplementing annual MAM with MRI costing $545 USD was not cost-effective under either adherence condition. If MRI costs were reduced to $300 USD, adding MRI to annual MAM at age 30-74 years could become more cost-effective, particularly in the reduced adherence condition (ICER = $133,682 USD). CONCLUSION Annual BC screening using MAM at age 30-74 years is effective and cost-effective in female chest-irradiated HL survivors. Although annual adjunct MRI is not cost-effective at $545 USD cost, it could become cost-effective as MRI cost is reduced, a plausible scenario with the emergent use of abbreviated MRI.