Published in

Oxford University Press, Biostatistics, 1(24), p. 85-107, 2021

DOI: 10.1093/biostatistics/kxab023

Links

Tools

Export citation

Search in Google Scholar

Tailored Bayes: a risk modeling framework under unequal misclassification costs

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Summary Risk prediction models are a crucial tool in healthcare. Risk prediction models with a binary outcome (i.e., binary classification models) are often constructed using methodology which assumes the costs of different classification errors are equal. In many healthcare applications, this assumption is not valid, and the differences between misclassification costs can be quite large. For instance, in a diagnostic setting, the cost of misdiagnosing a person with a life-threatening disease as healthy may be larger than the cost of misdiagnosing a healthy person as a patient. In this article, we present Tailored Bayes (TB), a novel Bayesian inference framework which “tailors” model fitting to optimize predictive performance with respect to unbalanced misclassification costs. We use simulation studies to showcase when TB is expected to outperform standard Bayesian methods in the context of logistic regression. We then apply TB to three real-world applications, a cardiac surgery, a breast cancer prognostication task, and a breast cancer tumor classification task and demonstrate the improvement in predictive performance over standard methods.