Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 2(503), p. 2927-2943, 2021

DOI: 10.1093/mnras/stab583

Links

Tools

Export citation

Search in Google Scholar

Detection of spectral variations of Anomalous Microwave Emission with QUIJOTE and C-BASS

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Anomalous Microwave Emission (AME) is a significant component of Galactic diffuse emission in the frequency range 10–$60\, \mathrm{GHz}$ and a new window into the properties of sub-nanometre-sized grains in the interstellar medium. We investigate the morphology of AME in the ≈10○ diameter λ Orionis ring by combining intensity data from the QUIJOTE experiment at 11, 13, 17, and $19\, \mathrm{GHz}$ and the C-Band All Sky Survey (C-BASS) at $4.76\, \mathrm{GHz}$, together with 19 ancillary data sets between 1.42 and $3000\, \mathrm{GHz}$. Maps of physical parameters at 1○ resolution are produced through Markov chain Monte Carlo (MCMC) fits of spectral energy distributions (SEDs), approximating the AME component with a lognormal distribution. AME is detected in excess of $20\, σ$ at degree-scales around the entirety of the ring along photodissociation regions (PDRs), with three primary bright regions containing dark clouds. A radial decrease is observed in the AME peak frequency from $≈ 35\, \mathrm{GHz}$ near the free–free region to $≈ 21\, \mathrm{GHz}$ in the outer regions of the ring, which is the first detection of AME spectral variations across a single region. A strong correlation between AME peak frequency, emission measure and dust temperature is an indication for the dependence of the AME peak frequency on the local radiation field. The AME amplitude normalized by the optical depth is also strongly correlated with the radiation field, giving an overall picture consistent with spinning dust where the local radiation field plays a key role.