The Company of Biologists, Journal of Experimental Biology, 19(225), 2022
DOI: 10.1242/jeb.244099
Full text: Download
ABSTRACT In fish otoliths, CaCO3 normally precipitates as aragonite, and more rarely as vaterite or calcite. A higher incidence of vaterite deposition in otoliths from aquaculture-reared fish has been reported and it is thought that high growth rates under farming conditions might promote its deposition. To test this hypothesis, otoliths from growth hormone (GH) transgenic coho salmon and non-transgenic fish of matching size were compared. Once morphometric parameters were normalized by animal length, we found that transgenic fish otoliths were smaller (−24%, −19%, −20% and −30% for length, width, perimeter and area, respectively; P<0.001) and rounder (−12%, +13.5%, +15% and −15.5% in circularity, form factor, roundness and ellipticity; P<0.001) than otoliths from non-transgenic fish of matching size. Interestingly, transgenic fish had smaller eyes (−30% eye diameter) and showed a strong correlation between eye and otolith size. We also found that the percentage of otoliths showing vaterite deposition was significantly smaller in transgenic fish (21–28%) than in non-transgenic fish (69%; P<0.001). Likewise, the area affected by vaterite deposition within individual otoliths was reduced in transgenic fish (21–26%) compared with non-transgenic fish (42.5%; P<0.001). Our results suggest that high growth rates per se are not sufficient to cause vaterite deposition in all cases, and that GH overexpression might have a protective role against vaterite deposition, a hypothesis that needs further investigation.