Published in

MDPI, Remote Sensing, 7(13), p. 1272, 2021

DOI: 10.3390/rs13071272

Links

Tools

Export citation

Search in Google Scholar

Prediction of Aboveground Biomass of Three Cassava (Manihot esculenta) Genotypes Using a Terrestrial Laser Scanner

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Challenges in rapid prototyping are a major bottleneck for plant breeders trying to develop the needed cultivars to feed a growing world population. Remote sensing techniques, particularly LiDAR, have proven useful in the quick phenotyping of many characteristics across a number of popular crops. However, these techniques have not been demonstrated with cassava, a crop of global importance as both a source of starch as well as animal fodder. In this study, we demonstrate the applicability of using terrestrial LiDAR for the determination of cassava biomass through binned height estimations, total aboveground biomass and total leaf biomass. We also tested using single LiDAR scans versus multiple registered scans for estimation, all within a field setting. Our results show that while the binned height does not appear to be an effective method of aboveground phenotyping, terrestrial laser scanners can be a reliable tool in acquiring surface biomass data in cassava. Additionally, we found that using single scans versus multiple scans provides similarly accurate correlations in most cases, which will allow for the 3D phenotyping method to be conducted even more rapidly than expected.