Dissemin is shutting down on January 1st, 2025

Published in

Springer, Precision Agriculture, 6(23), p. 1949-1966, 2022

DOI: 10.1007/s11119-022-09940-0

Links

Tools

Export citation

Search in Google Scholar

Leaf area index estimations by deep learning models using RGB images and data fusion in maize

Journal article published in 2022 by P. Castro-Valdecantos ORCID, O. E. Apolo-Apolo, M. Pérez-Ruiz, G. Egea
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe leaf area index (LAI) is a biophysical crop parameter of great interest for agronomists and plant breeders. Direct methods for measuring LAI are normally destructive, while indirect methods are either costly or require long pre- and post-processing times. In this study, a novel deep learning-based (DL) model was developed using RGB nadir-view images taken from a high-throughput plant phenotyping platform for LAI estimation of maize. The study took place in a commercial maize breeding trial during two consecutive growing seasons. Ground-truth LAI values were obtained non-destructively using an allometric relationship that was derived to calculate the leaf area of individual leaves from their main leaf dimensions (length and maximum width). Three convolutional neural network (CNN)-based DL model approaches were proposed using RGB images as input. One of the models tested is a classification model trained with a set of RGB images tagged with previously measured LAI values (classes). The second model provides LAI estimates from CNN-based linear regression and the third one uses a combination of RGB images and numerical data as input of the CNN-based model (multi-input model). The results obtained from the three approaches were compared against ground-truth data and LAI estimations from a classic indirect method based on nadir-view image analysis and gap fraction theory. All DL approaches outperformed the classic indirect method. The multi-input_model showed the least error and explained the highest proportion of the observed LAI variance. This work represents a major advance for LAI estimation in maize breeding plots as compared to previous methods, in terms of processing time and equipment costs.