Published in

Hindawi, Oxidative Medicine and Cellular Longevity, (2021), p. 1-17, 2021

DOI: 10.1155/2021/5526665

Links

Tools

Export citation

Search in Google Scholar

Low-Intensity Exercise Routine for a Long Period of Time Prevents Osteosarcopenic Obesity in Sedentary Old Female Rats, by Decreasing Inflammation and Oxidative Stress and Increasing GDF-11

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The loss of skeletal muscle mass and strength is known as sarcopenia; it is characterized as a progressive and generalized muscle disorder associated with aging. This deterioration can seriously compromise the elderly’s health and reduce their quality of life. In addition to age, there are other factors that induce muscle mass loss, among which are sedentary lifestyle, chronic diseases, inflammation, and obesity. In recent years, a new clinical condition has been observed in older adults that affects their physical capacities and quality of life, which is known as osteosarcopenic obesity (OSO). Osteoporosis, sarcopenia, and obesity coexist in this condition. Physical exercise and nutritional management are the most widely used interventions for the treatment and prevention of sarcopenia. However, in older adults, physical exercise and protein intake do not have the same outcomes observed in younger people. Here, we used a low-intensity exercise routine for a long period of time (LIERLT) in order to delay the OSO appearance related to sedentarism and aging in female Wistar rats. The LIERLT routine consisted of walking at 15 m/min for 30 min, five days a week for 20 months. To evaluate the effects of the LIERLT routine, body composition was determined using DXA-scan, additionally, biochemical parameters, inflammatory profile, oxidative protein damage, redox state, and serum concentration of GDF-11 at different ages were evaluated (4, 8, 12, 18, 22, and 24 months). Our results show that the LIERLT routine delays OSO phenotype in old 24-month-old rats, in a mechanism involving the decrease in the inflammatory state and oxidative stress. GDF-11 was evaluated as a protein related to muscle repair and regeneration; interestingly, rats that perform the LIERLT increased their GDF-11 levels.