Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Processes, 8(10), p. 1548, 2022

DOI: 10.3390/pr10081548

Links

Tools

Export citation

Search in Google Scholar

Production of Extracellular Lipase by Bacillus halotolerans from Oil-Contaminated Soil in a Pilot-Scale Submerged Bioreactor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Microbial lipases are the biocatalyst of choice for the present and future because of their characteristics, including their ability to remain active as an enzyme throughout a broad pH, temperature, and substrate range. The goal of the current investigation was to find novel sources of substrates and isolates from soil contaminated by oil for the synthesis of lipase. On tributyrin media, 10 lipolytic bacterial strains that were isolated from oil-contaminated soil were grown. Using the zone of clearance, it was possible to identify the isolates with the highest activity. Following phylogenetic tree analysis, molecular characterization of the 16S rRNA sequence of the bacterial isolates revealed that it was Bacillus halotolerans (VSH 09). The enzyme was purified to near homogeneity. The enzyme activity was found to be optimum at a pH of 7.0 and a temperature of 35 °C. While Ni2+ and Cu2+ had no effect, the presence of Mg2+ and Ca2+ exhibited the highest levels of enzyme activity. At 1%, tributyrin as a substrate exhibited its highest level of activity. The molecular weight, as determined by SDS-PAGE, was found to be 38 kDa. The kinetics of the enzyme were found to be 41.66 and 9.37 mg/mL for Vmax and Km, respectively. The high yield of lipase produced by this method suggests that it holds potential for production on a large scale and could be used for various biotechnological applications.