Published in

Microbiology Society, Journal of Medical Microbiology, 7(70), 2021

DOI: 10.1099/jmm.0.001384

Links

Tools

Export citation

Search in Google Scholar

Hospital transmission of borderline oxacillin-resistant Staphylococcus aureus evaluated by whole-genome sequencing

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Introduction. Staphylococcus aureus is a major cause of hospital infections worldwide. Awareness towards methicillin-resistant S. aureus (MRSA) infections is high but attention towards borderline oxacillin-resistant S. aureus (BORSA) is limited, possibly due to an underestimated clinical relevance, presumption of low incidence and diagnostic limitations. Gap statement. BORSA surveillance has not been routinely implemented, and thus consensus with regard to a definition and infection control measures is lacking. Aim. Our goals were to investigate the occurrence, molecular characteristics and clinical manifestations of BORSA infections in the hospital setting. Methodology. Following an increased incidence in 2016, BORSA cases in 2014/2016 (in our institution) were more specifically evaluated. Medical records were reviewed to investigate epidemiological links, clinical characteristics and outcomes. Resistance and virulence markers were assessed by whole genome sequencing (WGS). Conventional methods: amplified fragment length polymorphism (AFLP) ; multilocus sequence typing (MLST) and multiple locus variable-number tandem repeat analysis (MLVA) were compared with core genome MLST (cgMLST) and whole-genome single nucleotide polymorphism (wgSNP) analysis to confirm genetic clusters. Results. From 2009 to 2013, BORSA comprised 0.1 % of all clinical S. aureus strains. In 2016, the incidence was six-fold higher in comparison to the baseline. Whole-genome SNP and cgMLST confirmed two BORSA clusters among patients with dermatological conditions. Patients with BORSA presented with skin infections, and one case developed a severe invasive infection with a fatal outcome. Infection control measures successfully prevented further transmission in both clusters. WGS findings showed that BORSA strains carried multiple resistance and virulence genes with increased pathogenic potential. Conclusion. WGS and cgMLST effectively characterized and confirmed BORSA clusters among at-risk patients with clinical manifestations ranging from mild skin infections to life-threatening bacteraemia. Clinical awareness and active monitoring are therefore warranted for the timely implementation of infection control measures to prevent BORSA transmission in high-risk patients.