Published in

Hittite Journal of Science and Engineering, 3(9), p. 193-204, 2022

DOI: 10.17350/hjse19030000271

Links

Tools

Export citation

Search in Google Scholar

Design and Fabrication of Soft 3D Printed Sensors and Performance Analysis of the Soft Sensors in a C-leg as Sensing Element

Journal article published in 2022 by Doğa Özbek, Talip Batuhan Yilmaz, Mert Ali İhsan Kalin, Onur Özcan
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

In soft robotics, a recent challenge is to decrease the number of rigid components used tocreate entirely soft robots. A common rigid component used in soft robots is the rigid encoder, which should be replaced with a soft counterpart if possible. In this work, we de-sign and manufacture a soft sensor, which is embedded into a C-shaped leg of a soft, legged, miniature robot. Our main goal is to show that we can embed a soft sensor into and receive contact feedback from a soft C-shaped leg of our soft miniature quadruped. We test various sensor parameters using custom test setups to analyze the soft sensor performance. Our soft sensor design is iterated by experimentally investigating several sensor shape options. For the C-leg of the soft miniature quadruped, optimal sensor geometry and position for the sensor implementation are found from a discrete design space as the outcome of this work. We received feedback from the soft sensor and compared commercial encoder data to the soft sensor embedded C-leg data. We managed to detect the rotation speed of the C-leg with the accuracy of 87.5% on a treadmill and with the accuracy of %86.7 under free rotation of the C-leg. However, if connection loss occurs in the miniature slipring mechanism, the error percentage in estimating the rotational speed increases significantly.