Published in

American Association for Cancer Research, Cancer Immunology Research, 11(10), p. 1354-1369, 2022

DOI: 10.1158/2326-6066.cir-21-1075

Links

Tools

Export citation

Search in Google Scholar

Targeting Macrophages with CAR T Cells Delays Solid Tumor Progression and Enhances Antitumor Immunity

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Tumor-associated macrophages (TAM) are one of the most abundant cell types in many solid tumors and typically exert protumor effects. This has led to an interest in macrophage-depleting agents for cancer therapy, but approaches developed to date have had limited success in clinical trials. Here, we report the development of a strategy for TAM depletion in mouse solid tumor models using chimeric antigen receptor (CAR) T cells targeting the macrophage marker F4/80 (F4.CAR-T). F4.CAR-T cells effectively killed macrophages in vitro and in vivo without toxicity. When injected into mice bearing orthotopic lung tumors, F4.CAR-T cells infiltrated tumor lesions and delayed tumor growth comparably with PD-1 blockade, and significantly extended mouse survival. Antitumor effects were mediated by F4.CAR-T–produced IFNγ, which promoted upregulation of MHC molecules on cancer cells and tumor-infiltrating myeloid cells. Notably, F4.CAR-T promoted expansion of endogenous CD8 T cells specific for tumor-associated antigen and led to immune editing of highly antigenic tumor cell clones. Antitumor impact was also observed in mouse models of ovarian and pancreatic cancer. These studies provide proof of principle to support CAR T-cell targeting of TAMs as a means to enhance antitumor immunity.