Published in

MDPI, Sensors, 9(22), p. 3126, 2022

DOI: 10.3390/s22093126

Links

Tools

Export citation

Search in Google Scholar

Numerical Simulation and Experimental Study of the Drop Impact for a Multiphase System Formed by Two Immiscible Fluids

Journal article published in 2022 by Agata Sochan, Krzysztof Lamorski ORCID, Andrzej Bieganowski ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The multiphase splash phenomenon is especially interesting in the context of environmental protection, as it could be a mechanism for transporting various types of pollution. A numerical 3D multiphase transport model was applied to a splash that occurred under the impact of a petrol drop on the water surface. The splash phenomenon in immiscible liquids was simulated using the multiphaseInterFoam solver, i.e., a part of the OpenFOAM computational fluid dynamics software implementing the finite volume method (FVM) for space discretization. Thirteen variants with a variable drop size (3.00–3.60 mm) or drop velocity (3.29–3.44 m/s) were conducted and validated experimentally based on splash images taken by a high-speed camera (2800 fps). Based on the numerical simulation, it was possible to analyse aspects that were difficult or impossible to achieve experimentally due to the limitations of the image analysis method. The aspects included the cavity spread, the jet forming moment, and, notably, the scale of the petroleum contamination spread in the splash effect. The simulations showed that droplets detaching from the crown did not consist of pure water but were mostly a “mixture” of water and petrol or petrol alone. The applied modelling workflow is an efficient way to simulate three-phase splash phenomena.