Full text: Unavailable
Abstract Objective. To spatio-temporally resolve cardiac signals in functional magnetic resonance imaging (fMRI) time-series of the human brain using neither external physiological measurements nor ad hoc modelling assumptions. Approach. Cardiac pulsation is a physiological confound of fMRI time-series that introduces spurious signal fluctuations in proximity to blood vessels. fMRI alone is not sufficiently fast to resolve cardiac pulsation. Depending on the ratio between the instantaneous heart-rate and the acquisition sampling frequency ( 1 / TR , with TR being the repetition time), the cardiac signal may alias into the frequency band of neural activation so that its removal through spectral filtering techniques is generally not possible. In this paper, we show that it is feasible to temporally and spatially resolve cardiac signals throughout the brain even when cardiac aliasing occurs by combining fMRI hyper-sampling with simultaneous multislice (SMS) imaging. The technique, which we name WHOle-brain CArdiac signal REgression from highly accelerated simultaneous multi-Slice fMRI acquisitions (WHOCARES), was developed on 695 healthy subjects selected from the Human Connectome Project and its performance validated against the RETROICOR, HAPPY and the pulse oxymeter signal regression methods. Main results. WHOCARES is capable of retrieving voxel-wise cardiac signal regressors. This is achieved without employing external physiological recordings nor through ad hoc modelling assumptions. The performance of WHOCARES was, on average, superior to RETROICOR, HAPPY and the pulse oxymeter regression methods. Significance. WHOCARES holds basis for the reliable mapping of cardiac activity in fMRI time-series. WHOCARES can be employed for the retrospective removal of cardiac noise in publicly available fMRI datasets where physiological recordings are not available. WHOCARES is freely available at https://github.com/gferrazzi/WHOCARES.