Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Nutrients, 6(14), p. 1313, 2022

DOI: 10.3390/nu14061313

Links

Tools

Export citation

Search in Google Scholar

Curcumin Enhances Fed-State Muscle Microvascular Perfusion but Not Leg Glucose Uptake in Older Adults

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Therapeutic interventions aimed at enhancing blood flow may combat the postprandial vascular and metabolic dysfunction that manifests with chronological ageing. We compared the effects of acute curcumin (1000 mg) coupled with an oral nutritional supplement (ONS, 7.5 g protein, 24 g carbohydrate and 6 g fat) versus a placebo and ONS (control) on cerebral and leg macrovascular blood flow, leg muscle microvascular blood flow, brachial artery endothelial function, and leg insulin and glucose responses in healthy older adults (n = 12, 50% male, 73 ± 1 year). Curcumin enhanced m. tibialis anterior microvascular blood volume (MBV) at 180 and 240 min following the ONS (baseline: 1.0 vs. 180 min: 1.08 ± 0.02, p = 0.01 vs. 240 min: 1.08 ± 0.03, p = 0.01), and MBV was significantly higher compared with the control at both time points (p < 0.05). MBV increased from baseline in the m. vastus lateralis at 240 min after the ONS in both groups (p < 0.05), and there were no significant differences between groups. Following the ONS, leg blood flow and leg vascular conductance increased, and leg vascular resistance decreased similarly in both conditions (p < 0.05). Brachial artery flow-mediated dilation and middle cerebral artery blood flow were unchanged in both conditions (p > 0.05). Similarly, the curcumin and control groups demonstrated comparable increases in glucose uptake and insulin in response to the ONS. Thus, acute curcumin supplementation enhanced ONS-induced increases in m. tibialis anterior MBV without potentiating m. vastus lateralis MBV, muscle glucose uptake, or systemic endothelial or macrovascular function in healthy older adults.