Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optica, 9(9), p. 965, 2022

DOI: 10.1364/optica.467440

Links

Tools

Export citation

Search in Google Scholar

Micro-fabricated mirrors with finesse exceeding one million

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Fabry–Perot resonator is one of the most widely used optical devices, enabling scientific and technological breakthroughs in diverse fields including cavity quantum electrodynamics, optical clocks, precision length metrology, and spectroscopy. Though resonator designs vary widely, all high-end applications benefit from mirrors with the lowest loss and highest finesse possible. Fabrication of the highest-finesse mirrors relies on centuries-old mechanical polishing techniques, which offer losses at the parts-per-million (ppm) level. However, no existing fabrication techniques are able to produce high-finesse resonators with the large range of mirror geometries needed for scalable quantum devices and next-generation compact atomic clocks. In this paper, we introduce a scalable approach to fabricate mirrors with ultrahigh finesse ( ≥ 10 6 ) and user-defined radius of curvature spanning of four orders of magnitude ( 10 − 4 − 10 0 m ). We employ photoresist reflow and reactive ion etching to shape and transfer mirror templates onto a substrate while maintaining sub-Angstrom roughness. This substrate is coated with a dielectric stack and used to create arrays of compact Fabry–Perot resonators with finesse values as high as 1.3 million and measured excess loss < 1 p p m . Optical ringdown measurements of 43 devices across five substrates reveal that the fabricated cavity mirrors—with both small and large radii of curvature—produce an average coating-limited finesse of 1.05 million. This versatile approach opens the door to scalable fabrication of high-finesse miniaturized Fabry–Perot cavities needed for emerging quantum optics and frequency metrology technologies.