Published in

Optica, Optica, 9(9), p. 1050, 2022

DOI: 10.1364/optica.459009

Links

Tools

Export citation

Search in Google Scholar

Spatially resolved mass flux measurements with dual-comb spectroscopy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Providing an accurate, representative sample of mass flux across large open areas for atmospheric studies or the extreme conditions of a hypersonic engine is challenging for traditional intrusive or point-based sensors. Here, we demonstrate that laser absorption spectroscopy with mode-locked frequency combs can simultaneously measure all of the components of mass flux (velocity, temperature, pressure, and species mole fraction) with low uncertainty, spatial resolution corresponding to the laser line of sight, and no supplemental sensor readings. The low uncertainty is provided by the broad spectral bandwidth, high resolution, and extremely well-known and controlled frequency axis of stabilized, mode-locked frequency combs. We demonstrate these capabilities using dual-frequency comb spectroscopy (DCS) in the isolator of a ground-test supersonic propulsion engine at Wright-Patterson Air Force Base. The mass flux measurements are consistent within 3.6% of the facility-level engine air supply values. A vertical scan of the laser beams in the isolator measures the spatially resolved mass flux, which is compared with computational fluid dynamics simulations. A rigorous uncertainty analysis demonstrates an instrument uncertainty of ∼ 0.4 % , and total uncertainty (including non-instrument sources) of ∼ 7 % for mass flux measurements. These measurements demonstrate DCS with mode-locked frequency combs as a low-uncertainty mass flux sensor for a variety of applications.