Published in

American Association for the Advancement of Science, Science, 6593(376), 2022

DOI: 10.1126/science.abn1479

Links

Tools

Export citation

Search in Google Scholar

Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Biogeomorphic wetlands cover 1% of Earth’s surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and forest ecosystems. Here, we review how feedbacks between geomorphology and landscape-building vegetation underlie these qualities and how feedback disruption can switch wetlands from carbon sinks into sources. Currently, human activities are driving rapid declines in the area of major carbon-storing wetlands (1% annually). Our findings highlight the urgency to stop through conservation ongoing losses and to reestablish landscape-forming feedbacks through restoration innovations that recover the role of biogeomorphic wetlands as the world’s biotic carbon hotspots.