Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Classical and Quantum Gravity, 20(39), p. 204009, 2022

DOI: 10.1088/1361-6382/ac84be

Links

Tools

Export citation

Search in Google Scholar

Result of the MICROSCOPE weak equivalence principle test

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The space mission MICROSCOPE dedicated to the test of the equivalence principle (EP) operated from April 25, 2016 until the deactivation of the satellite on October 16, 2018. In this analysis we compare the free-fall accelerations (a A and a B) of two test masses in terms of the Eötvös parameter η ( A,B ) = 2 a A − a B a A + a B . No EP violation has been detected for two test masses, made from platinum and titanium alloys, in a sequence of 19 segments lasting from 13 to 198 h down to the limit of the statistical error which is smaller than 10−14 for η(Ti, Pt). Accumulating data from all segments leads to η(Ti, Pt) = [−1.5 ± 2.3 (stat) ± 1.5 (syst)] × 10−15 showing no EP violation at the level of 2.7 × 10−15 if we combine stochastic and systematic errors quadratically. This represents an improvement of almost two orders of magnitude with respect to the previous best such test performed by the Eöt-Wash group. The reliability of this limit has been verified by comparing the free falls of two test masses of the same composition (platinum) leading to a null Eötvös parameter with a statistical uncertainty of 1.1 × 10−15.