Published in

Optica, Optics Express, 19(30), p. 33780, 2022

DOI: 10.1364/oe.463721

Links

Tools

Export citation

Search in Google Scholar

Fabrication tolerant and wavelength independent arbitrary power splitters on a monolithic silicon photonics platform

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We experimentally demonstrate wavelength-independent couplers based on an asymmetric Mach-Zehnder interferometer on a monolithic silicon-photonics platform in a state-of-the-art CMOS foundry. The devices are also designed to exhibit fabrication tolerant performance for arbitrary splitting ratios. We have developed a semi-analytical model to optimize the device response and the reliability of the model is benchmarked against 3D-FDTD simulations. Experimental results are consistent with the simulation results obtained by the model and show uniform performance across different wafer sites with a standard deviation for the splitting ratio of only 0.6% at 1310 nm wavelength. The maximum spectral deviation of the splitting ratio (3-dB splitter) is measured to be 1.2% over a wavelength range of at least 80 nm and the insertion loss ranges from 0.08 to 0.38 dB. The wavelength-independent coupler has a compact footprint of 60 × 40 μ m 2 .