Published in

Optica, Optics Express, 19(30), p. 35041, 2022

DOI: 10.1364/oe.469895

Links

Tools

Export citation

Search in Google Scholar

Investigation of noise-like pulse evolution in normal dispersion fiber lasers mode-locked by nonlinear polarization rotation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Transition from a gain-guided soliton (GGS) to a fully developed noise-like pulse (NLP) is numerically demonstrated in fiber lasers operated in the normal dispersion regime, which explains well the experimental observation of spectrum evolution that the bottom of the averaged spectrum gradually broadens with pump power increasing. Numerical results suggest that the transition could also happen under the condition of cavity linear phase delay bias change with fixed pump power. It is demonstrated that the peak power clamping effect and the normal dispersion are the key factors leading to the spectrum evolution. In addition, intermittent meta-stable states between GGS and NLP can be obtained when the cavity dispersion is chosen at small normal dispersion.