Published in

Palgrave Macmillan, Development, 14(148), 2021

DOI: 10.1242/dev.196022

Links

Tools

Export citation

Search in Google Scholar

scRNA sequencing uncovers a TCF4-dependent transcription factor network regulating commissure development in mouse

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Orange circle
Preprint: archiving restricted
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Transcription factor 4 (TCF4) is a crucial regulator of neurodevelopment and has been linked to the pathogenesis of autism, intellectual disability and schizophrenia. As a class I bHLH transcription factor (TF), it is assumed that TCF4 exerts its neurodevelopmental functions through dimerization with proneural class II bHLH TFs. Here, we aim to identify TF partners of TCF4 in the control of interhemispheric connectivity formation. Using a new bioinformatic strategy integrating TF expression levels and regulon activities from single cell RNA-sequencing data, we find evidence that TCF4 interacts with non-bHLH TFs and modulates their transcriptional activity in Satb2+ intercortical projection neurons. Notably, this network comprises regulators linked to the pathogenesis of neurodevelopmental disorders, e.g. FOXG1, SOX11 and BRG1. In support of the functional interaction of TCF4 with non-bHLH TFs, we find that TCF4 and SOX11 biochemically interact and cooperatively control commissure formation in vivo, and regulate the transcription of genes implicated in this process. In addition to identifying new candidate interactors of TCF4 in neurodevelopment, this study illustrates how scRNA-Seq data can be leveraged to predict TF networks in neurodevelopmental processes.